C11	0.4473 (3)	0.6496 (2)	0.95378 (11)	0.0526 (5)
N3	0.5372 (3)	0.6799 (2)	1.00374 (12)	0.0703 (6)
C12	0.2915 (3)	0.7386 (2)	0.84392 (11)	0.0528 (5)
N4	0.2583 (3)	0.8366 (3)	0.80851 (13)	0.0762 (7)
01	0.0429 (3)	0.2866 (2)	0.89409 (10)	0.0640 (5)
C13	0.0279 (6)	0.1443 (3)	0.8664 (2)	0.0957 (12)

Table 4. Selected geometric parameters (Å, °) for (2)

	0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C101	1.414 (3)	C5—C6	1.597 (2)
C1-C2	1.516 (3)	C6C10	1.468 (3)
C1-C8	1.531 (3)	С6—С9	1.479 (2)
C1-C6	1.582 (3)	C7—C8	1.497 (4)
C2-C3	1.356 (3)	C9-N1	1.134 (2)
C3—C4	1.509 (3)	C10—N2	1.148 (3)
C4C7	1.518 (3)	C11—N3	1.133 (3)
C4C5	1.585 (3)	C12N4	1.133 (3)
C5-C12	1.475 (3)	01—C13	1.425 (3)
C5-C11	1.481 (3)		
01-C1-C2	114.5 (2)	C11-C5-C6	112.22 (14)
01-C1-C8	114.5 (2)	C4C5C6	108.09 (15)
C2-C1-C8	109.5 (2)	C10-C6-C9	107.42 (15)
01-C1-C6	103.79 (14)	C10C6C1	107.89 (15)
C2-C1-C6	105.7 (2)	C9-C6-C1	109.16 (15)
C8C1C6	108.2 (2)	C10-C6-C5	111.53 (15)
C3C2C1	113.9 (2)	C9—C6—C5	112.52 (14)
C2-C3-C4	114.0 (2)	C1-C6-C5	108.20 (14)
C3C4C7	109.0 (2)	C8C7C4	111.2 (2)
C3C4C5	107.0 (2)	C7—C8—C1	110.6 (2)
C7-C4-C5	107.7 (2)	N1-C9-C6	178.5 (2)
C12-C5-C11	107.6 (2)	N2-C10-C6	177.9 (2)
C12-C5-C4	108.8 (2)	N3C11C5	175.6 (3)
C11-C5-C4	108.3 (2)	N4-C12-C5	175.7 (2)
C12-C5-C6	111.77 (15)	C1	115.6 (2)
C1-C2-C3C4	1.0 (2)	C4C5C6C1	3.3 (2)
C4_C7_C8_C1	25(2)	C2C	- 59 5 (2)

For both compounds, data collection: Enraf-Nonius CAD-4 software; cell refinement: *CELSIUS* (local software); data reduction: *CORINC* (local software); program(s) used to solve structures: *SHELXS86* (Sheldrick, 1990); program(s) used to refine structures: *SHELXL93* (Sheldrick, 1993); molecular graphics: *SCHAKAL92* (Keller, 1992); software used to prepare material for publication: *SHELXL93*.

We wish to thank the Deutsche Forschungsgemeinschaft, Bonn, for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SE1061). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bentley, K. W. (1954). The Chemistry of the Morphinane Alkaloids, pp. 209-301. Oxford: Clarendon Press.
- Bentley, K. W. (1971). The Alkaloids, Vol. 8, edited by R. H. F. Manske, pp. 75–135. London: Academic Press.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Keller, E. (1992). SCHAKAL92. Fortran Program for the Graphic Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.
- Pindur, U. & Keilhofer, D. (1993). Liebigs Ann. Chem. pp. 947-953.
- Pindur, U., Keilhofer, D. & Schollmeyer D. (1994). Z. Naturforsch. Teil B, pp. 272–279
- Hua, D. H., Jung, W.-Y., Ostrander, R. A. & Takusagawa, F. (1987). J. Org. Chem. 52, 2509–2517.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Lewis, J. W., Readhead, M. J., Selby, I. A., Smith, A. C. B. & Young, C. A. (1971). J. Chem. Soc. C, pp. 1158–1163

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 505-507

N^2 -Cyano- N^1 -isopropyl- N^3 -[4-(3-methyl-phenylamino)-3-pyridylsulfonyl]guanidine

LÉON DUPONT

Unité de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium

BERNARD MASEREEL, PASCAL DE TULLIO, BERNARD PIROTTE AND JACQUES DELARGE

Laboratoire de Chimie Pharmaceutique, Institut de Pharmacie F1, Université de Liège, Rue Fusch 5, B-4000 Liège, Belgium

(Received 4 July 1994; accepted 9 September 1994)

Abstract

The title compound, $C_{17}H_{20}N_6O_2S$, is a bioisoster of torasemide, a loop diuretic whose structure has been described previously. The sulfonylurea chain of torasemide is replaced by a sulfonylcyanoguanidine function. Whereas the torasemide molecule and some sulforylurea derivatives exhibit one of the three α , β or γ conformations, the conformation being assigned according to the torsion angles in the side chain, the title compound displays a new δ conformation. This conformation is stabilized by two intramolecular N-H···O hydrogen bonds. A prototropic form of the title compound corresponding to a zwitterion [-S-N⁻-C-, N⁺--H (pyridinium)] is observed {*i.e* N^2 -cyano- N^1 -isopropyl- N^3 -[4-(3-methylphenylamino)-3-pyridiniosulfonyl]guanidin-3-ide}. The crystal cohesion is the result of both van der Waals interactions and one intermolecular $N^+ - H \cdots N^-$ hydrogen bond involving the N atoms of the zwitterion.

Comment

 N^2 -Cyano- N^1 -isopropyl- N^3 -[4-(3-methylphenylamino)-3-pyridylsulfonyl]guanidine, (I), is a bioisoster of torasemide, a loop diuretic (Friedel & Buckley, 1991) whose structure has been described previously (Dupont, Campsteyn, Lamotte & Vermeire, 1978; Dupont, Lamotte, Campsteyn & Vermeire, 1978). The structure differs from that of torasemide in that the sulfonylurea side chain is replaced by a sulfonvlcvanoguanidine function. The present crystal structure determination contributes to the study of this never-before-described function. Its synthesis and biological activity are to be published elsewhere.

In the title crystal, the torasemide molecule exhibits three different conformations, denoted α , β and γ , as defined by Dupont, Dideberg & Delarge (1981). All sulfonylurea derivatives of torasemide studied previously by cystallography belong to one of these three categories. According to the values of the torsion angles C1-C5-S1-N3, C5-S1-N3-C6, S1-N3-C6-N4 and N3-C6-N4-C7 found in the present work. compound (I) displays a new conformation, denoted δ , defined by the typical values +90, +90 (arbitrarily positive), 0 and 180°, respectively, for the above torsion angles. Therefore, two intramolecular hydrogen bonds are possible N1—H1A···O1 [N1···O1 2.792 (3), H1A···O1 2.047 (3) Å, N1—H1A···O1 144.4 (9)°] and N4— $H4A \cdots O2 [N4 \cdots O2 2.816 (3), H4A \cdots O2 2.123 (3) Å,$ N4—H4A···O2 137.3 (9)°].

The distances and angles within the pyridine ring and the sulfonvl-NCN-isopropyl chain, in particular S1—N3 [1.576 (2) Å] and C3—N2—C4 [120.5 (2)°], suggest a prototropic zwitterionic formula where atom N3 is deprotonated and possesses a negative charge and atom N2 is protonated producing a pyridinium ring (Dupont, Dideberg, Delarge, Dive & Thunus, 1982). A significantly better R factor in the refinement reinforces this hypothesis.

The angle between the phenylamino and the aminopyridinium least-squares planes is 23.61 (7)°. The crys-

C5

O1

02

tal cohesion is the result of van der Waals interactions and an N2⁺—H2A···N3⁻($\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$) hydrogen bond [N2···N3 2.869 (3), H2A···N3 2.016 (3) Å, N2— H2A···N3 170.85 (8)°].

Cu $K\alpha$ radiation

 $\theta = 25.20 - 41.19^{\circ}$

 $\mu = 1.763 \text{ mm}^{-1}$

T = 293 (2) K

Colourless

Prism

Cell parameters from 40 reflections

 $0.61 \times 0.34 \times 0.15$ mm

Crystal source: Laboratory

Univ. of Liège

of Medicinal Chemistry,

 $\lambda = 1.5418$ Å

Experimental

Crystal data C17H20N6O2S $M_r = 372.45$ Monoclinic $P2_1/n$ a = 11.7356 (10) Åb = 13.5707 (14) Åc = 12.4426(11) Å $\beta = 110.975(8)^{\circ}$ V = 1850.3 (3) Å³ Z = 4 $D_x = 1.337 \text{ Mg m}^{-3}$

Data collection

$R_{\rm bu} = 0.0293$
$\theta_{\rm max} = 57.50^{\circ}$
$h = -11 \rightarrow 12$
$k = 0 \rightarrow 14$
$l = -13 \rightarrow 0$
2 standard reflections
monitored every 100
reflections
intensity decay: 4.9%

Refinement

Cl

C2 C3 C4 C5

Refinement on F^2	$\Delta \rho_{\rm max} = 0.221 \text{ e } \text{\AA}^{-3}$
R(F) = 0.0387	$\Delta \rho_{\rm min} = -0.227 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1129$	Extinction correction:
S = 0.983	SHELXL93 (Sheldrick,
2537 reflections	1993)
241 parameters	Extinction coefficient:
H atoms were included as	0.0077 (6)
riding atoms at calculated	Atomic scattering factors
positions	from International Tables
$w = 1/[\sigma^2(F_o^2) + (0.0854P)^2]$	for Crystallography (1992
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} < 0.001$	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	у	Z	U_{eq}
0.6442 (2)	0.8330 (2)	0.0283 (2)	0.0441 (6)
0.7236 (2)	0.9073 (2)	0.0899 (2)	0.0518 (7)
0.7873 (2)	0.8964 (2)	0.2044 (2)	0.0550 (7)
0.7088 (2)	0.7386 (2)	0.2038 (2)	0.0455 (6)
0.6415 (2)	0.7450 (2)	0.0895 (2)	0.0409 (6)
0.3548 (2)	0.6683 (2)	0.0825 (2)	0.0472 (6)
0.3309 (3)	0.5897 (2)	0.2534 (2)	0.0656 (8)
0.3616 (4)	0.6730 (3)	0.3394 (3)	0.0919 (11)
0.3719 (4)	0.4908 (3)	0.3105 (3)	0.0989 (12)

C10	0.2294 (2)	0.7950 (2)	-0.0056 (2)	0.0546 (7)
C11	0.5384 (2)	0.9175 (2)	-0.1636 (2)	0.0478 (6)
C12	0.4801 (2)	0.8905 (2)	-0.2785 (2)	0.0539 (7)
C13	0.4322 (2)	0.9605 (2)	-0.3644 (2)	0.0576 (7)
C14	0.4479 (3)	1.0590 (2)	-0.3339 (3)	0.0652 (8)
C15	0.5078 (3)	1.0852 (2)	0.2211 (3)	0.0640 (8)
C16	0.5509 (2)	1.0166 (2)	-0.1350 (2)	0.0566 (7)
C17	0.3652 (3)	0.9282 (3)	-0.4874 (2)	0.0837 (11)
N1	0.5736 (2)	0.83871 (15)	-0.0851 (2)	0.0528 (6)
N2	0.7791 (2)	0.8142 (2)	0.2604 (2)	0.0512 (6)
N3	0.4117 (2)	0.67763 (14)	0.0037 (2)	0.0440 (5)
N4	0.3896 (2)	0.6036 (2)	0.1676 (2)	0.0591 (6)
N5	0.2573 (2)	0.7234 (2)	0.0720 (2)	0.0553 (6)
N6	0.1978 (2)	0.8602 (2)	-0.0699 (2)	0.0663 (7)
01	0.55310 (14)	0.63347 (11)	-0.08854 (13)	0.0460 (5)
02	0.59174 (15)	0.56223 (12)	0.10331 (13)	0.0489 (4)
S1	0.54599 (5)	0.64297 (4)	0.02414 (5)	0.0403 (2)

Table 2. Selected geometric parameters (Å, °)

C1—N1	1.359 (3)	C10N6	1.161 (4)
C1C2	1.400 (3)	C10N5	1.326 (4)
C1C5	1.423 (3)	C11-C16	1.386 (3)
C2-C3	1.359 (3)	C11-C12	1.395 (3)
C3N2	1.337 (3)	C11—N1	1.407 (3)
C4-N2	1.346 (3)	C12-C13	1.391 (4)
C4C5	1.360 (3)	C13-C14	1.384 (4)
C5-S1	1.783 (2)	C13-C17	1.513 (4)
C6N4	1.322 (3)	C14-C15	1.373 (4)
C6-N5	1.334 (3)	C15C16	1.372 (4)
C6N3	1.375 (3)	N3	1.576 (2)
C7—N4	1.476 (3)	01—S1	1.440 (2)
C7	1 513 (4)	02-51	1.442 (2)
C7-C8	1.509 (4)	02 01	
C/C8	1.507 (4)		
N1-C1-C2	124.5 (2)	C13-C12-C11	121.6 (3)
N1-C1-C5	118.8 (2)	C14C13C12	118.1 (3)
C2-C1-C5	116.7 (2)	C14-C13-C17	121.8 (3)
C3-C2-C1	120.3 (2)	C12-C13-C17	120.0 (3)
N2-C3-C2	121.4 (2)	C15-C14-C13	120.0 (3)
N2C4C5	121.1 (2)	C16C15C14	122.2 (3)
C4C5C1	119.8 (2)	C15C16C11	118.9 (3)
C4C5S1	117.6 (2)	C1-N1-C11	133.1 (2)
C1-C5-S1	122.6 (2)	C4—N2—C3	120.5 (2)
N4C6N5	117.3 (2)	C6—N3—S1	124.8 (2)
N4C6N3	122.8 (2)	C6-N4-C7	125.0 (2)
N5-C6-N3	119.8 (2)	C10N5C6	117.5 (2)
N4C7C9	107.5 (2)	O1-S1-O2	117.37 (10)
N4-C7-C8	111.2 (3)	01	105.85 (10)
C9C7C8	112.1 (3)	O2S1N3	116.30 (10)
N6C10N5	174.4 (3)	01-S1-C5	105.51 (10)
C16C11C12	119.1 (2)	O2-S1-C5	105.00 (10)
C16-C11-N1	125.6 (2)	N3-S1-C5	105.71 (10)
C12-C11-N1	115.2 (2)		
NI CI CI CI	177 5 (2)	C8_C7_N4_C6	-740(4)
$N_1 = C_1 = C_2 = C_3$	177.5(2)	N6-C10-N5-C6	-1719(29)
	-1.0(3)	N/ C6 N5 C10	173 3 (2)
	1/3.1 (2)	N2 C6 N5 C10	-91(4)
	-13.2(4)		-9.1(4)
UI2-UII-NI-UI	1/0.1 (3)	C6 N2 S1 O2	137.7(2)
N4-C0-N3-31	-21.0(3)	$C_{0} = 10 = 31 = 02$	
N3-C0-N3-31	100.8 (2)		-30.4(2)
NJCON4C/	-1.7 (4)	$C_1 = C_2 = S_1 = O_1$	41.3(2)
N3-C6-N4-C7	-1/9.2 (2)	$C_1 - C_2 - S_1 - O_2$	103.9 (2)
C9-C7-N4-C6	162.9 (3)	CIC3SIN3	/ U.O (2)

Data collection: *DIF4* (Stoe & Cie, 1988a). Cell refinement: *DIF4*. Data reduction: *REDU4* (Stoe & Cie, 1988b). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993). Molecular graphics: *PLUTO* (Motherwell, 1976). Software used to prepare material for publication: *SHELXL93*.

The authors thank M. M. Vermeire for his helpful assistance in the diffractometry measurements and the FNRS for financial support.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry, including bond distances and angles involving H atoms, and torsion angles have been deposited with the IUCr (Reference: PA1139). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Dupont, L., Campsteyn, H., Lamotte, J. & Vermeire, M. (1978). Acta Cryst. B34, 2659–2662.
- Dupont, L., Dideberg, O. & Delarge, J. (1981). Cryst. Struct. Commun. 10, 89-96
- Dupont, L., Dideberg, O., Delarge, J., Dive, G. & Thunus, L. (1982). Acta Cryst. B38, 1495–1500.
- Dupont, L., Lamotte, J., Campsteyn, H. & Vermeire, M. (1978). Acta Cryst. B34, 1304-1310.
- Friedel, H. A. & Buckley, M. M. T. (1991). Drugs, 41, 81-103.
- Motherwell, W. D. S. (1976). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Sheldrick, G. M. (1990). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 507-509

Nimesulide

LÉON DUPONT

Unité de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium

BERNARD PIROTTE, BERNARD MASEREEL AND JACQUES DELARGE

Laboratoire de Chimie Pharmaceutique, Institut de Pharmacie F1, Université de Liège, Rue Fusch 5, B-4000 Liège, Belgium

JOSEF GECZY

Therabel Research, Chaussée d'Alsemberg 1001, B-1180 Bruxelles, Belgium

(Received 10 July 1994; accepted 9 September 1994)

Abstract

4-Nitro-2-phenoxymethanesulfonanilide, $C_{13}H_{12}N_2O_5S$, is an anti-inflammatory drug. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bond. The angle between the two phenyl rings